HyPar  1.0
Finite-Difference Hyperbolic-Parabolic PDE Solver on Cartesian Grids
2D Euler Equations - Isentropic Vortex Convection

Location: hypar/Examples/2D/NavierStokes2D/InviscidVortexConvection_PETSc_Implicit (This directory contains all the input files needed to run this case. If there is a Run.m, run it in MATLAB to quickly set up, run, and visualize the example).

Governing equations: 2D Euler Equations (navierstokes2d.h - By default, NavierStokes2D::Re is set to -1 which makes the code skip the parabolic terms, i.e., the 2D Euler equations are solved.)

Reference: C.-W. Shu, "Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws", ICASE Report 97-65, 1997

Domain: \(0 \le x,y \le 10\), "periodic" (_PERIODIC_) boundary conditions.

Initial solution: The freestream flow is given by

\begin{equation} \rho_\infty = 1,\ u_\infty = 0.5,\ v_\infty = 0,\ p_\infty = 1 \end{equation}

and a vortex is introduced, specified as

\begin{align} \rho &= \left[ 1 - \frac{\left(\gamma-1\right)b^2}{8\gamma\pi^2} e^{1-r^2} \right]^{\frac{1}{\gamma-1}},\ p = \rho^\gamma, \\ u &= u_\infty - \frac{b}{2\pi} e^{\frac{1}{2}\left(1-r^2\right)} \left(y-y_c\right),\ v = v_\infty + \frac{b}{2\pi} e^{\frac{1}{2}\left(1-r^2\right)} \left(x-x_c\right), \end{align}

where \(b=0.5\) is the vortex strength and \(r = \left[(x-x_c)^2 + (y-y_c)^2 \right]^{1/2}\) is the distance from the vortex center \(\left(x_c,y_c\right) = \left(5,5\right)\).

Numerical method:

Input files required:

.petscrc

# See PETSc documentation for more details (https://petsc.org/release/overview/).
# Note that if the following are specified in this file, the corresponding inputs in solver.inp are *ignored*.
# + "-ts_dt" (time step size): ignores "dt" in solver.inp
# + "-ts_max_steps" (maximum number of time iterations): ignores "n_iter" in solver.inp
# + "-ts_max_time" (final simulation time): ignores "n_iter" X "dt" in solver.inp
# If these are not specified here, then the values in solver.inp are used.
# Use PETSc time-integration
-use-petscts
# Time integration scheme type - ARK
-ts_type cn
# no time-step adaptivity
-ts_adapt_type none
# Nonlinear solver (SNES) type
-snes_type newtonls
# Set relative tolerance
-snes_rtol 1e-4
# Set absolute tolerance
-snes_atol 1e-4
# Set step size tolerance
-snes_stol 1e-16
# Linear solver (KSP) type
-ksp_type gmres
# Set relative tolerance
-ksp_rtol 1e-4
# Set absolute tolerance
-ksp_atol 1e-4
# use a preconditioner for solving the system
-with_pc
# preconditioner type - SOR
-pc_type sor
-pc_sor_omega 1.0
-pc_sor_its 5
# apply right preconditioner
-ksp_pc_side RIGHT

solver.inp

begin
ndims 2
nvars 4
size 60 60
iproc 2 2
ghost 3
n_iter 50
restart_iter 0
time_scheme rk
time_scheme_type ssprk3
hyp_space_scheme cupw5
hyp_flux_split no
hyp_interp_type components
par_space_type nonconservative-2stage
par_space_scheme 4
dt 0.4
conservation_check yes
screen_op_iter 1
file_op_iter 5
input_mode serial
ip_file_type binary
output_mode serial
op_file_format tecplot2d
op_overwrite no
model navierstokes2d
end

boundary.inp

4
periodic 0 1 0 0 0 10.0
periodic 0 -1 0 0 0 10.0
periodic 1 1 0 10.0 0 0
periodic 1 -1 0 10.0 0 0

physics.inp

begin
gamma 1.4
upwinding roe
end

lusolver.inp (optional)

begin
reducedsolvetype gather-and-solve
evaluate_norm 1
maxiter 10
atol 1e-12
rtol 1e-10
verbose 0
end

To generate initial.inp (initial solution) and exact.inp (exact solution), compile and run the following code in the run directory.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
double power(double x,double a)
{
return(exp(a*log(x)));
}
int main(){
const double pi = 4.0*atan(1.0);
const double GAMMA = 1.4;
int NI,NJ,ndims,n_iter;
double tf, dt;
char ip_file_type[50]; strcpy(ip_file_type,"ascii");
FILE *in, *out;
printf("Reading file \"solver.inp\"...\n");
in = fopen("solver.inp","r");
if (!in) {
printf("Error: Input file \"solver.inp\" not found. Default values will be used.\n");
return(0);
} else {
char word[500];
fscanf(in,"%s",word);
if (!strcmp(word, "begin")) {
while (strcmp(word, "end")) {
fscanf(in,"%s",word);
if (!strcmp(word, "ndims")) fscanf(in,"%d",&ndims);
else if (!strcmp(word, "size")) {
fscanf(in,"%d",&NI);
fscanf(in,"%d",&NJ);
} else if (!strcmp(word, "n_iter")) fscanf(in,"%d",&n_iter);
else if (!strcmp(word, "dt")) fscanf(in,"%lf",&dt);
else if (!strcmp(word, "ip_file_type")) fscanf(in,"%s",ip_file_type);
}
} else printf("Error: Illegal format in solver.inp. Crash and burn!\n");
}
fclose(in);
if (ndims != 2) {
printf("ndims is not 2 in solver.inp. this code is to generate 2D exact solution\n");
return(0);
}
printf("Grid:\t\t\t%d X %d\n",NI,NJ);
int i,j;
double dx = 10.0 / ((double)NI);
double dy = 10.0 / ((double)NJ);
tf = (double)n_iter * dt; double tff = tf;
while (tf > 20) tf -= 20; // Time period
double *x, *y, *u0, *u1, *u2, *u3;
x = (double*) calloc (NI , sizeof(double));
y = (double*) calloc (NJ , sizeof(double));
u0 = (double*) calloc (NI*NJ, sizeof(double));
u1 = (double*) calloc (NI*NJ, sizeof(double));
u2 = (double*) calloc (NI*NJ, sizeof(double));
u3 = (double*) calloc (NI*NJ, sizeof(double));
double u_inf = 0.5;
double v_inf = 0.0;
double b = u_inf;
double x0, y0;
/* Initial solution */
x0 = 5.0, y0 = 5.0;
for (i = 0; i < NI; i++){
for (j = 0; j < NJ; j++){
x[i] = i*dx;
y[j] = j*dy;
int p = NJ*i + j;
double rx, ry;
rx = (x[i] - x0);
ry = (y[j] - y0);
if (rx < -5) { rx += 10; }
else if (rx > 5) { rx -= 10; }
double rsq = rx*rx + ry*ry;
double rho, u, v, P;
double du, dv;
rho = power(1.0 - ((GAMMA-1.0)*b*b)/(8.0*GAMMA*pi*pi) * exp(1.0-rsq), 1.0/(GAMMA-1.0));
P = power(rho,GAMMA);
du = - b/(2.0*pi) * exp(0.5*(1.0-rsq)) * ry;
dv = b/(2.0*pi) * exp(0.5*(1.0-rsq)) * rx;
u = u_inf + du;
v = v_inf + dv;
u0[p] = rho;
u1[p] = rho*u;
u2[p] = rho*v;
u3[p] = P/(GAMMA-1.0) + 0.5*rho*(u*u+v*v);
}
}
if (!strcmp(ip_file_type,"ascii")) {
printf("Writing ASCII initial solution file initial.inp\n");
out = fopen("initial.inp","w");
for (i = 0; i < NI; i++) fprintf(out,"%lf ",x[i]);
fprintf(out,"\n");
for (j = 0; j < NJ; j++) fprintf(out,"%lf ",y[j]);
fprintf(out,"\n");
for (j = 0; j < NJ; j++) {
for (i = 0; i < NI; i++) {
int p = NJ*i + j;
fprintf(out,"%lf ",u0[p]);
}
}
fprintf(out,"\n");
for (j = 0; j < NJ; j++) {
for (i = 0; i < NI; i++) {
int p = NJ*i + j;
fprintf(out,"%lf ",u1[p]);
}
}
fprintf(out,"\n");
for (j = 0; j < NJ; j++) {
for (i = 0; i < NI; i++) {
int p = NJ*i + j;
fprintf(out,"%lf ",u2[p]);
}
}
fprintf(out,"\n");
for (j = 0; j < NJ; j++) {
for (i = 0; i < NI; i++) {
int p = NJ*i + j;
fprintf(out,"%lf ",u3[p]);
}
}
fprintf(out,"\n");
fclose(out);
} else if ((!strcmp(ip_file_type,"binary")) || (!strcmp(ip_file_type,"bin"))) {
printf("Writing binary initial solution file initial.inp\n");
out = fopen("initial.inp","wb");
fwrite(x,sizeof(double),NI,out);
fwrite(y,sizeof(double),NJ,out);
double *U = (double*) calloc (4*NI*NJ,sizeof(double));
for (i=0; i < NI; i++) {
for (j = 0; j < NJ; j++) {
int p = NJ*i + j;
int q = NI*j + i;
U[4*q+0] = u0[p];
U[4*q+1] = u1[p];
U[4*q+2] = u2[p];
U[4*q+3] = u3[p];
}
}
fwrite(U,sizeof(double),4*NI*NJ,out);
free(U);
fclose(out);
}
/* Exact solution */
x0 = 5.0+tf*u_inf, y0 = 5.0;
if (x0 > 10) x0 -= 10; //periodic domain
printf("Final time: %lf, Vortex center: %lf, %lf\n",tff,x0,y0);
for (i = 0; i < NI; i++){
for (j = 0; j < NJ; j++){
x[i] = i*dx;
y[j] = j*dy;
int p = NJ*i + j;
double rx, ry;
rx = (x[i] - x0);
ry = (y[j] - y0);
if (rx < -5) { rx += 10; }
else if (rx > 5) { rx -= 10; }
double rsq = rx*rx + ry*ry;
double rho, u, v, P;
double du, dv;
rho = power(1.0 - ((GAMMA-1.0)*b*b)/(8.0*GAMMA*pi*pi) * exp(1.0-rsq), 1.0/(GAMMA-1.0));
P = power(rho,GAMMA);
du = - b/(2.0*pi) * exp(0.5*(1.0-rsq)) * ry;
dv = b/(2.0*pi) * exp(0.5*(1.0-rsq)) * rx;
u = u_inf + du;
v = v_inf + dv;
u0[p] = rho;
u1[p] = rho*u;
u2[p] = rho*v;
u3[p] = P/(GAMMA-1.0) + 0.5*rho*(u*u+v*v);
}
}
if (!strcmp(ip_file_type,"ascii")) {
printf("Writing ASCII exact solution file exact.inp\n");
out = fopen("exact.inp","w");
for (i = 0; i < NI; i++) fprintf(out,"%lf ",x[i]);
fprintf(out,"\n");
for (j = 0; j < NJ; j++) fprintf(out,"%lf ",y[j]);
fprintf(out,"\n");
for (j = 0; j < NJ; j++) {
for (i = 0; i < NI; i++) {
int p = NJ*i + j;
fprintf(out,"%lf ",u0[p]);
}
}
fprintf(out,"\n");
for (j = 0; j < NJ; j++) {
for (i = 0; i < NI; i++) {
int p = NJ*i + j;
fprintf(out,"%lf ",u1[p]);
}
}
fprintf(out,"\n");
for (j = 0; j < NJ; j++) {
for (i = 0; i < NI; i++) {
int p = NJ*i + j;
fprintf(out,"%lf ",u2[p]);
}
}
fprintf(out,"\n");
for (j = 0; j < NJ; j++) {
for (i = 0; i < NI; i++) {
int p = NJ*i + j;
fprintf(out,"%lf ",u3[p]);
}
}
fprintf(out,"\n");
fclose(out);
} else if ((!strcmp(ip_file_type,"binary")) || (!strcmp(ip_file_type,"bin"))) {
printf("Writing binary exact solution file exact.inp\n");
out = fopen("exact.inp","wb");
fwrite(x,sizeof(double),NI,out);
fwrite(y,sizeof(double),NJ,out);
double *U = (double*) calloc (4*NI*NJ,sizeof(double));
for (i=0; i < NI; i++) {
for (j = 0; j < NJ; j++) {
int p = NJ*i + j;
int q = NI*j + i;
U[4*q+0] = u0[p];
U[4*q+1] = u1[p];
U[4*q+2] = u2[p];
U[4*q+3] = u3[p];
}
}
fwrite(U,sizeof(double),4*NI*NJ,out);
free(U);
fclose(out);
}
free(x);
free(y);
free(u0);
free(u1);
free(u2);
free(u3);
return(0);
}

Output:

Note that iproc is set to

  2 2

in solver.inp (i.e., 2 processors along x, and 2 processors along y). Thus, this example should be run with 4 MPI ranks (or change iproc).

After running the code, there should be 11 output files op_00000.dat, op_00001.dat, ... op_00010.dat; the first one is the solution at \(t=0\) and the final one is the solution at \(t=20\). Since HyPar::op_overwrite is set to no in solver.inp, separate files are written for solutions at each output time.

HyPar::op_file_format is set to tecplot2d in solver.inp, and thus, all the files are in a format that Tecplot (http://www.tecplot.com/) or other visualization software supporting the Tecplot format (e.g. VisIt - https://wci.llnl.gov/simulation/computer-codes/visit/) can read. In these files, the first two lines are the Tecplot headers, after which the data is written out as: the first two columns are grid indices, the next two columns are x and y coordinates, and the remaining columns are the solution components. HyPar::op_file_format can be set to text to get the solution files in plain text format (which can be read in and visualized in MATLAB for example).

The following plot shows the density contours at the final time t=1, obtained from plotting op_00010.dat:

Solution_2DNavStokVortexPETSc.gif

Since the exact solution is available at the final time (exact.inp is a copy of initial.inp), the numerical errors are calculated and reported on screen (see below) as well as errors.dat:

60 60 2 2 4.0000000000000002E-01 3.2667147746076830E-04 7.2425229604029177E-04 4.3081508365755789E-03 5.0213549999999998E+00 5.0242630000000004E+00

The numbers are: number of grid points in each dimension (HyPar::dim_global), number of processors in each dimension (MPIVariables::iproc), time step size (HyPar::dt), L1, L2, and L-infinity errors (HyPar::error), solver wall time (seconds) (i.e., not accounting for initialization, and cleaning up), and total wall time.

Since HyPar::ConservationCheck is set to yes in solver.inp, the code checks for conservation error and prints it to screen, as well as the file conservation.dat:

60 60 2 2 4.0000000000000002E-01 7.2438760358210831E-10 1.3570868162490087E-09 8.7093637607393859E-08 1.0474043348809878E-09

The numbers are: number of grid points in each dimension (HyPar::dim_global), number of processors in each dimension (MPIVariables::iproc), time step size (HyPar::dt), and conservation error (HyPar::ConservationError) of each component. Note that the conservation error depends on the accuracy with which the implicit systems are solved. Since the systems are solved with relaxed tolerances here (see ksp_atol, ksp_rtol, snes_atol, snes_rtol in .petscrc), the conservation error is zero within round-off.

The file function_counts.dat reports the computational expense (in terms of the number of function counts):

50
757
0
757
200
0
100
557

The numbers are, respectively,

Expected screen output:

HyPar - Parallel (MPI) version with 4 processes
Compiled with PETSc time integration.
Reading solver inputs from file "solver.inp".
No. of dimensions : 2
No. of variables : 4
Domain size : 60 60
Processes along each dimension : 2 2
No. of ghosts pts : 3
No. of iter. : 50
Restart iteration : 0
Time integration scheme : PETSc
Spatial discretization scheme (hyperbolic) : cupw5
Split hyperbolic flux term? : no
Interpolation type for hyperbolic term : components
Spatial discretization type (parabolic ) : nonconservative-2stage
Spatial discretization scheme (parabolic ) : 4
Time Step : 4.000000E-01
Check for conservation : yes
Screen output iterations : 1
File output iterations : 5
Initial solution file type : binary
Initial solution read mode : serial
Solution file write mode : serial
Solution file format : tecplot2d
Overwrite solution file : no
Physical model : navierstokes2d
Partitioning domain.
Allocating data arrays.
Reading array from binary file initial.inp (Serial mode).
Volume integral of the initial solution:
0: 9.9980704056028983E+01
1: 4.9990353049341181E+01
2: -1.0213269162340222E-06
3: 2.6245709192907299E+02
Reading boundary conditions from "boundary.inp".
Boundary periodic: Along dimension 0 and face +1
Boundary periodic: Along dimension 0 and face -1
Boundary periodic: Along dimension 1 and face +1
Boundary periodic: Along dimension 1 and face -1
4 boundary condition(s) read.
Initializing solvers.
Initializing physics. Model = "navierstokes2d"
Reading physical model inputs from file "physics.inp".
Setting up PETSc time integration...
SolvePETSc(): Problem type is nonlinear.
** Starting PETSc time integration **
Writing solution file op_00000.dat.
Iteration: 1 Time: 4.000E-01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 1.5113E-09
Iteration: 2 Time: 8.000E-01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 2.8500E-09
Iteration: 3 Time: 1.200E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 4.0478E-09
Iteration: 4 Time: 1.600E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 5.2663E-09
Iteration: 5 Time: 2.000E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 6.7435E-09
Writing solution file op_00001.dat.
Iteration: 6 Time: 2.400E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 8.6126E-09
Iteration: 7 Time: 2.800E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 1.0727E-08
Iteration: 8 Time: 3.200E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 1.2818E-08
Iteration: 9 Time: 3.600E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 1.4702E-08
Iteration: 10 Time: 4.000E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 1.6348E-08
Writing solution file op_00002.dat.
Iteration: 11 Time: 4.400E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 1.7838E-08
Iteration: 12 Time: 4.800E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 1.9286E-08
Iteration: 13 Time: 5.200E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 2.0783E-08
Iteration: 14 Time: 5.600E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 2.2347E-08
Iteration: 15 Time: 6.000E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 2.3942E-08
Writing solution file op_00003.dat.
Iteration: 16 Time: 6.400E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 2.5550E-08
Iteration: 17 Time: 6.800E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 2.7177E-08
Iteration: 18 Time: 7.200E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 2.8830E-08
Iteration: 19 Time: 7.600E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 3.0883E-08
Iteration: 20 Time: 8.000E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 3.2919E-08
Writing solution file op_00004.dat.
Iteration: 21 Time: 8.400E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 3.4904E-08
Iteration: 22 Time: 8.800E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 3.6311E-08
Iteration: 23 Time: 9.200E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 3.7890E-08
Iteration: 24 Time: 9.600E+00 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 3.9632E-08
Iteration: 25 Time: 1.000E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 4.1393E-08
Writing solution file op_00005.dat.
Iteration: 26 Time: 1.040E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 4.3056E-08
Iteration: 27 Time: 1.080E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 4.4586E-08
Iteration: 28 Time: 1.120E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 4.5986E-08
Iteration: 29 Time: 1.160E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 4.7366E-08
Iteration: 30 Time: 1.200E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 4.8950E-08
Writing solution file op_00006.dat.
Iteration: 31 Time: 1.240E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 5.0925E-08
Iteration: 32 Time: 1.280E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 5.3206E-08
Iteration: 33 Time: 1.320E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 5.5533E-08
Iteration: 34 Time: 1.360E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 5.7672E-08
Iteration: 35 Time: 1.400E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 5.9539E-08
Writing solution file op_00007.dat.
Iteration: 36 Time: 1.440E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 6.1200E-08
Iteration: 37 Time: 1.480E+01 Max CFL: 4.230E+00 Max Diff. No.: -1.000E+00 Conservation loss: 6.2791E-08
Iteration: 38 Time: 1.520E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 6.4441E-08
Iteration: 39 Time: 1.560E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 6.6179E-08
Iteration: 40 Time: 1.600E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 6.7952E-08
Writing solution file op_00008.dat.
Iteration: 41 Time: 1.640E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 6.9716E-08
Iteration: 42 Time: 1.680E+01 Max CFL: 4.230E+00 Max Diff. No.: -1.000E+00 Conservation loss: 7.1452E-08
Iteration: 43 Time: 1.720E+01 Max CFL: 4.230E+00 Max Diff. No.: -1.000E+00 Conservation loss: 7.3173E-08
Iteration: 44 Time: 1.760E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 7.5379E-08
Iteration: 45 Time: 1.800E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 7.7596E-08
Writing solution file op_00009.dat.
Iteration: 46 Time: 1.840E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 7.9779E-08
Iteration: 47 Time: 1.880E+01 Max CFL: 4.230E+00 Max Diff. No.: -1.000E+00 Conservation loss: 8.1912E-08
Iteration: 48 Time: 1.920E+01 Max CFL: 4.230E+00 Max Diff. No.: -1.000E+00 Conservation loss: 8.3439E-08
Iteration: 49 Time: 1.960E+01 Max CFL: 4.230E+00 Max Diff. No.: -1.000E+00 Conservation loss: 8.5218E-08
Iteration: 50 Time: 2.000E+01 Max CFL: 4.229E+00 Max Diff. No.: -1.000E+00 Conservation loss: 8.7114E-08
Writing solution file op_00010.dat.
** Completed PETSc time integration **
Reading array from binary file exact.inp (Serial mode).
Computed errors:
L1 Error : 3.2667147746076830E-04
L2 Error : 7.2425229604029177E-04
Linfinity Error : 4.3081508365755789E-03
Conservation Errors:
7.2438760358210831E-10
1.3570868162490087E-09
8.7093637607393859E-08
1.0474043348809878E-09
Solver runtime (in seconds): 5.0213549999999998E+00
Total runtime (in seconds): 5.0242630000000004E+00
Deallocating arrays.
Finished.