|
HyPar
1.0
Finite-Difference Hyperbolic-Parabolic PDE Solver on Cartesian Grids
|
Compute the right-hand-side for implicit time integration. More...
#include <stdlib.h>#include <basic.h>#include <arrayfunctions.h>#include <mpivars_cpp.h>#include <simulation_object.h>#include <petscinterface.h>Go to the source code of this file.
Macros | |
| #define | __FUNCT__ "PetscIFunctionImpl" |
Functions | |
| PetscErrorCode | PetscIFunctionImpl (TS ts, PetscReal t, Vec Y, Vec Ydot, Vec F, void *ctxt) |
Compute the right-hand-side for implicit time integration.
Definition in file PetscIFunctionImpl.cpp.
| #define __FUNCT__ "PetscIFunctionImpl" |
Definition at line 16 of file PetscIFunctionImpl.cpp.
| PetscErrorCode PetscIFunctionImpl | ( | TS | ts, |
| PetscReal | t, | ||
| Vec | Y, | ||
| Vec | Ydot, | ||
| Vec | F, | ||
| void * | ctxt | ||
| ) |
Compute the left-hand-side for the implicit time integration of the governing equations: The spatially discretized ODE can be expressed as
\begin{equation} \frac {d{\bf U}} {dt} = {\bf F}\left({\bf U}\right). \end{equation}
This function computes \(\dot{\bf U} - {\bf F}\left({\bf U}\right)\), given \({\bf U},\dot{\bf U}\).
Note:
| ts | Time integration object |
| t | Current simulation time |
| Y | State vector (input) |
| Ydot | Time derivative of the state vector (input) |
| F | The computed right-hand-side vector |
| ctxt | Object of type PETScContext |
Definition at line 37 of file PetscIFunctionImpl.cpp.