33 k = 0; D[k] =
absolute( (1-aupw)*D[k] + 0.5*aupw*(1+upw)*
max(0,D[k]) + 0.5*aupw*(1-upw)*
min(0,D[k]) );
34 k = 4; D[k] =
absolute( (1-aupw)*D[k] + 0.5*aupw*(1+upw)*
max(0,D[k]) + 0.5*aupw*(1-upw)*
min(0,D[k]) );
35 k = 8; D[k] =
absolute( (1-aupw)*D[k] + 0.5*aupw*(1+upw)*
max(0,D[k]) + 0.5*aupw*(1-upw)*
min(0,D[k]) );
68 k = 4; D[k] =
absolute( (1-aupw)*D[k] + 0.5*aupw*(1+upw)*
max(0,D[k]) + 0.5*aupw*(1-upw)*
min(0,D[k]) );
69 k = 8; D[k] =
absolute( (1-aupw)*D[k] + 0.5*aupw*(1+upw)*
max(0,D[k]) + 0.5*aupw*(1-upw)*
min(0,D[k]) );
Contains function definitions for common mathematical functions.
Structure containing variables and parameters specific to the 1D Euler equations. This structure cont...
int Euler1DStiffJacobian(double *Jac, double *u, void *p, int dir, int nvars, int upw)
#define _Euler1DLeftEigenvectors_(u, L, p, dir)
#define _Euler1DEigenvalues_(u, D, p, dir)
#define _Euler1DRightEigenvectors_(u, R, p, dir)
1D Euler Equations (inviscid, compressible flows)
Contains macros and function definitions for common matrix multiplication.
#define MatMult3(N, A, X, Y)
int Euler1DJacobian(double *Jac, double *u, void *p, int dir, int nvars, int upw)