HyPar  1.0
Finite-Difference Hyperbolic-Parabolic PDE Solver on Cartesian Grids
Interp1PrimFifthOrderUpwind.c File Reference

5th order upwind scheme (Component-wise application to vectors). More...

#include <stdlib.h>
#include <basic.h>
#include <arrayfunctions.h>
#include <mathfunctions.h>
#include <interpolation.h>
#include <mpivars.h>
#include <hypar.h>

Go to the source code of this file.

Macros

#define _MINIMUM_GHOSTS_   3
 

Functions

int Interp1PrimFifthOrderUpwind (double *fI, double *fC, double *u, double *x, int upw, int dir, void *s, void *m, int uflag)
 5th order upwind reconstruction (component-wise) on a uniform grid More...
 

Detailed Description

5th order upwind scheme (Component-wise application to vectors).

Author
Debojyoti Ghosh

Definition in file Interp1PrimFifthOrderUpwind.c.

Macro Definition Documentation

◆ _MINIMUM_GHOSTS_

#define _MINIMUM_GHOSTS_   3

Minimum number of ghost points required for this interpolation method.

Definition at line 23 of file Interp1PrimFifthOrderUpwind.c.

Function Documentation

◆ Interp1PrimFifthOrderUpwind()

int Interp1PrimFifthOrderUpwind ( double *  fI,
double *  fC,
double *  u,
double *  x,
int  upw,
int  dir,
void *  s,
void *  m,
int  uflag 
)

5th order upwind reconstruction (component-wise) on a uniform grid

Computes the interpolated values of the first primitive of a function \({\bf f}\left({\bf u}\right)\) at the interfaces from the cell-centered values of the function using the fifth order upwind scheme on a uniform grid. The first primitive is defined as a function \({\bf h}\left({\bf u}\right)\) that satisfies:

\begin{equation} {\bf f}\left({\bf u}\left(x\right)\right) = \frac{1}{\Delta x} \int_{x-\Delta x/2}^{x+\Delta x/2} {\bf h}\left({\bf u}\left(\zeta\right)\right)d\zeta, \end{equation}

where \(x\) is the spatial coordinate along the dimension of the interpolation. This function computes the 5th order upwind numerical approximation \(\hat{\bf f}_{j+1/2} \approx {\bf h}_{j+1/2}\) as:

\begin{align} \hat{\bf f}_{j+1/2} = \frac{1}{30} {\bf f}_{j-2} - \frac{13}{60}{\bf f}_{j-1} + \frac{47}{60}{\bf f}_j + \frac{27}{60}{\bf f}_{j+1} - \frac{1}{20}{\bf f}_{j+2}. \end{align}

Implementation Notes:

  • This method assumes a uniform grid in the spatial dimension corresponding to the interpolation.
  • The method described above corresponds to a left-biased interpolation. The corresponding right-biased interpolation can be obtained by reflecting the equations about interface j+1/2.
  • The scalar interpolation method is applied to the vector function in a component-wise manner.
  • The function computes the interpolant for the entire grid in one call. It loops over all the grid lines along the interpolation direction and carries out the 1D interpolation along these grid lines.
  • Location of cell-centers and cell interfaces along the spatial dimension of the interpolation is shown in the following figure:
    chap1_1Ddomain.png

Function arguments:

Argument Type Explanation ------—
fI double* Array to hold the computed interpolant at the grid interfaces. This array must have the same layout as the solution, but with no ghost points. Its size should be the same as u in all dimensions, except dir (the dimension along which to interpolate) along which it should be larger by 1 (number of interfaces is 1 more than the number of interior cell centers).
fC double* Array with the cell-centered values of the flux function \({\bf f}\left({\bf u}\right)\). This array must have the same layout and size as the solution, with ghost points.
u double* The solution array \({\bf u}\) (with ghost points). If the interpolation is characteristic based, this is needed to compute the eigendecomposition. For a multidimensional problem, the layout is as follows: u is a contiguous 1D array of size (nvars*dim[0]*dim[1]*...*dim[D-1]) corresponding to the multi-dimensional solution, with the following ordering - nvars, dim[0], dim[1], ..., dim[D-1], where nvars is the number of solution components (HyPar::nvars), dim is the local size (HyPar::dim_local), D is the number of spatial dimensions.
x double* The grid array (with ghost points). This is used only by non-uniform-grid interpolation methods. For multidimensional problems, the layout is as follows: x is a contiguous 1D array of size (dim[0]+dim[1]+...+dim[D-1]), with the spatial coordinates along dim[0] stored from 0,...,dim[0]-1, the spatial coordinates along dim[1] stored along dim[0],...,dim[0]+dim[1]-1, and so forth.
upw int Upwinding direction: if positive, a left-biased interpolant will be computed; if negative, a right-biased interpolant will be computed. If the interpolation method is central, then this has no effect.
dir int Spatial dimension along which to interpolate (eg: 0 for 1D; 0 or 1 for 2D; 0,1 or 2 for 3D)
s void* Solver object of type HyPar: the following variables are needed - HyPar::ghosts, HyPar::ndims, HyPar::nvars, HyPar::dim_local.
m void* MPI object of type MPIVariables: this is needed only by compact interpolation method that need to solve a global implicit system across MPI ranks.
uflag int A flag indicating if the function being interpolated \({\bf f}\) is the solution itself \({\bf u}\) (if 1, \({\bf f}\left({\bf u}\right) \equiv {\bf u}\)).

Reference:

Parameters
fIArray of interpolated function values at the interfaces
fCArray of cell-centered values of the function \({\bf f}\left({\bf u}\right)\)
uArray of cell-centered values of the solution \({\bf u}\)
xGrid coordinates
upwUpwind direction (left or right biased)
dirSpatial dimension along which to interpolation
sObject of type HyPar containing solver-related variables
mObject of type MPIVariables containing MPI-related variables
uflagFlag to indicate if \(f(u) \equiv u\), i.e, if the solution is being reconstructed

Definition at line 68 of file Interp1PrimFifthOrderUpwind.c.

79 {
80  HyPar *solver = (HyPar*) s;
81 
82  int ghosts = solver->ghosts;
83  int ndims = solver->ndims;
84  int nvars = solver->nvars;
85  int *dim = solver->dim_local;
86  int *stride= solver->stride_with_ghosts;
87 
88  /* define some constants */
89  static const double one_by_thirty = 1.0/30.0,
90  thirteen_by_sixty = 13.0/60.0,
91  fortyseven_by_sixty = 47.0/60.0,
92  twentyseven_by_sixty = 27.0/60.0,
93  one_by_twenty = 1.0/20.0;
94 
95  /* create index and bounds for the outer loop, i.e., to loop over all 1D lines along
96  dimension "dir" */
97  int indexC[ndims], indexI[ndims], index_outer[ndims], bounds_outer[ndims], bounds_inter[ndims];
98  _ArrayCopy1D_(dim,bounds_outer,ndims); bounds_outer[dir] = 1;
99  _ArrayCopy1D_(dim,bounds_inter,ndims); bounds_inter[dir] += 1;
100  int N_outer; _ArrayProduct1D_(bounds_outer,ndims,N_outer);
101 
102  int i;
103 #pragma omp parallel for schedule(auto) default(shared) private(i,index_outer,indexC,indexI)
104  for (i=0; i<N_outer; i++) {
105  _ArrayIndexnD_(ndims,i,bounds_outer,index_outer,0);
106  _ArrayCopy1D_(index_outer,indexC,ndims);
107  _ArrayCopy1D_(index_outer,indexI,ndims);
108  for (indexI[dir] = 0; indexI[dir] < dim[dir]+1; indexI[dir]++) {
109  int qm1,qm2,qm3,qp1,qp2,p;
110  _ArrayIndex1D_(ndims,bounds_inter,indexI,0,p);
111  if (upw > 0) {
112  indexC[dir] = indexI[dir]-1; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qm1);
113  qm3 = qm1 - 2*stride[dir];
114  qm2 = qm1 - stride[dir];
115  qp1 = qm1 + stride[dir];
116  qp2 = qm1 + 2*stride[dir];
117  } else {
118  indexC[dir] = indexI[dir] ; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qm1);
119  qm3 = qm1 + 2*stride[dir];
120  qm2 = qm1 + stride[dir];
121  qp1 = qm1 - stride[dir];
122  qp2 = qm1 - 2*stride[dir];
123  }
124 
125  /* Defining stencil points */
126  double *fm3, *fm2, *fm1, *fp1, *fp2;
127  fm3 = (fC+qm3*nvars);
128  fm2 = (fC+qm2*nvars);
129  fm1 = (fC+qm1*nvars);
130  fp1 = (fC+qp1*nvars);
131  fp2 = (fC+qp2*nvars);
132 
133  int v;
134  for (v=0; v<nvars; v++) {
135  (fI+p*nvars)[v] = one_by_thirty * fm3[v]
136  - thirteen_by_sixty * fm2[v]
137  + fortyseven_by_sixty * fm1[v]
138  + twentyseven_by_sixty * fp1[v]
139  - one_by_twenty * fp2[v];
140  }
141  }
142  }
143 
144  return(0);
145 }
int nvars
Definition: hypar.h:29
#define _ArrayIndexnD_(N, index, imax, i, ghost)
int * stride_with_ghosts
Definition: hypar.h:414
int ndims
Definition: hypar.h:26
Structure containing all solver-specific variables and functions.
Definition: hypar.h:23
#define _ArrayIndex1D_(N, imax, i, ghost, index)
int * dim_local
Definition: hypar.h:37
int ghosts
Definition: hypar.h:52
#define _ArrayCopy1D_(x, y, size)
#define _ArrayProduct1D_(x, size, p)