HyPar  1.0
Finite-Difference Hyperbolic-Parabolic PDE Solver on Cartesian Grids
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
Interp1PrimThirdOrderMUSCLChar.c File Reference

Characteristic-based 3rd-order MUSCL scheme with Koren's limiter. More...

#include <stdio.h>
#include <stdlib.h>
#include <basic.h>
#include <arrayfunctions.h>
#include <matmult_native.h>
#include <mathfunctions.h>
#include <interpolation.h>
#include <mpivars.h>
#include <hypar.h>

Go to the source code of this file.

Macros

#define _MINIMUM_GHOSTS_   3
 

Functions

int Interp1PrimThirdOrderMUSCLChar (double *fI, double *fC, double *u, double *x, int upw, int dir, void *s, void *m, int uflag)
 3rd order MUSCL scheme with Koren's limiter (characteristic-based) on a uniform grid More...
 

Detailed Description

Characteristic-based 3rd-order MUSCL scheme with Koren's limiter.

Author
Debojyoti Ghosh

Definition in file Interp1PrimThirdOrderMUSCLChar.c.

Macro Definition Documentation

#define _MINIMUM_GHOSTS_   3

Minimum number of ghost points required for this interpolation method.

Definition at line 25 of file Interp1PrimThirdOrderMUSCLChar.c.

Function Documentation

int Interp1PrimThirdOrderMUSCLChar ( double *  fI,
double *  fC,
double *  u,
double *  x,
int  upw,
int  dir,
void *  s,
void *  m,
int  uflag 
)

3rd order MUSCL scheme with Koren's limiter (characteristic-based) on a uniform grid

Computes the interpolated values of the first primitive of a function \({\bf f}\left({\bf u}\right)\) at the interfaces from the cell-centered values of the function using the 3rd order MUSCL scheme with Koren's limiter on a uniform grid. The first primitive is defined as a function \({\bf h}\left({\bf u}\right)\) that satisfies:

\begin{equation} {\bf f}\left({\bf u}\left(x\right)\right) = \frac{1}{\Delta x} \int_{x-\Delta x/2}^{x+\Delta x/2} {\bf h}\left({\bf u}\left(\zeta\right)\right)d\zeta, \end{equation}

where \(x\) is the spatial coordinate along the dimension of the interpolation. This function computes numerical approximation \(\hat{\bf f}_{j+1/2} \approx {\bf h}_{j+1/2}\) as: using the 3rd order MUSCL scheme with Koren's limiter as follows:

\begin{equation} \hat{\alpha}^k_{j+1/2} = {\alpha}^k_{j-1} + \phi \left[\frac{1}{3}\left({\alpha}^k_j-{\alpha}^k_{j-1}\right) + \frac{1}{6}\left({\alpha}^k_{j-1}-{\alpha}^k_{j-2}\right)\right] \end{equation}

where

\begin{equation} \phi = \frac {3\left({\alpha}^k_j-{\alpha}^k_{j-1}\right)\left({\alpha}^k_{j-1}-{\alpha}^k_{j-2}\right) + \epsilon} {2\left[\left({\alpha}^k_j-{\alpha}^k_{j-1}\right)-\left({\alpha}^k_{j-1}-{\alpha}^k_{j-2}\right)\right]^2 + 3\left({\alpha}^k_j-{\alpha}^k_{j-1}\right)\left({\alpha}^k_{j-1}-{\alpha}^k_{j-2}\right) + \epsilon}, \end{equation}

\(\epsilon\) is a small constant (typically \(10^{-3}\)), and

\begin{equation} \alpha^k = {\bf l}_k \cdot {\bf f},\ k=1,\cdots,n \end{equation}

is the \(k\)-th characteristic quantity, and \({\bf l}_k\) is the \(k\)-th left eigenvector, \({\bf r}_k\) is the \(k\)-th right eigenvector, and \(n\) is HyPar::nvars. The final interpolated function is computed from the interpolated characteristic quantities as:

\begin{equation} \hat{\bf f}_{j+1/2} = \sum_{k=1}^n \alpha^k_{j+1/2} {\bf r}_k \end{equation}

Implementation Notes:

  • This method assumes a uniform grid in the spatial dimension corresponding to the interpolation.
  • The method described above corresponds to a left-biased interpolation. The corresponding right-biased interpolation can be obtained by reflecting the equations about interface j+1/2.
  • The left and right eigenvectors are computed at an averaged quantity at j+1/2. Thus, this function requires functions to compute the average state, and the left and right eigenvectors. These are provided by the physical model through

    If these functions are not provided by the physical model, then a characteristic-based interpolation cannot be used.

  • The function computes the interpolant for the entire grid in one call. It loops over all the grid lines along the interpolation direction and carries out the 1D interpolation along these grid lines.
  • Location of cell-centers and cell interfaces along the spatial dimension of the interpolation is shown in the following figure:
    chap1_1Ddomain.png

Function arguments:

Argument Type Explanation
fI double* Array to hold the computed interpolant at the grid interfaces. This array must have the same layout as the solution, but with no ghost points. Its size should be the same as u in all dimensions, except dir (the dimension along which to interpolate) along which it should be larger by 1 (number of interfaces is 1 more than the number of interior cell centers).
fC double* Array with the cell-centered values of the flux function \({\bf f}\left({\bf u}\right)\). This array must have the same layout and size as the solution, with ghost points.
u double* The solution array \({\bf u}\) (with ghost points). If the interpolation is characteristic based, this is needed to compute the eigendecomposition. For a multidimensional problem, the layout is as follows: u is a contiguous 1D array of size (nvars*dim[0]*dim[1]*...*dim[D-1]) corresponding to the multi-dimensional solution, with the following ordering - nvars, dim[0], dim[1], ..., dim[D-1], where nvars is the number of solution components (HyPar::nvars), dim is the local size (HyPar::dim_local), D is the number of spatial dimensions.
x double* The grid array (with ghost points). This is used only by non-uniform-grid interpolation methods. For multidimensional problems, the layout is as follows: x is a contiguous 1D array of size (dim[0]+dim[1]+...+dim[D-1]), with the spatial coordinates along dim[0] stored from 0,...,dim[0]-1, the spatial coordinates along dim[1] stored along dim[0],...,dim[0]+dim[1]-1, and so forth.
upw int Upwinding direction: if positive, a left-biased interpolant will be computed; if negative, a right-biased interpolant will be computed. If the interpolation method is central, then this has no effect.
dir int Spatial dimension along which to interpolate (eg: 0 for 1D; 0 or 1 for 2D; 0,1 or 2 for 3D)
s void* Solver object of type HyPar: the following variables are needed - HyPar::ghosts, HyPar::ndims, HyPar::nvars, HyPar::dim_local.
m void* MPI object of type MPIVariables: this is needed only by compact interpolation method that need to solve a global implicit system across MPI ranks.
uflag int A flag indicating if the function being interpolated \({\bf f}\) is the solution itself \({\bf u}\) (if 1, \({\bf f}\left({\bf u}\right) \equiv {\bf u}\)).

Reference:

  • van Leer, B., Towards the Ultimate Conservative Difference Scheme. 2: Monotonicity and Conservation Combined in a Second-Order Scheme, J. of Comput. Phys., 14 (4), 1974, pp.361-370, http://dx.doi.org/10.1016/0021-9991(74)90019-9
  • Koren, B., A Robust Upwind Discretization Method for Advection, Diffusion and Source Terms, Centrum voor Wiskunde en Informatica, Amsterdam, 1993
Parameters
fIArray of interpolated function values at the interfaces
fCArray of cell-centered values of the function \({\bf f}\left({\bf u}\right)\)
uArray of cell-centered values of the solution \({\bf u}\)
xGrid coordinates
upwUpwind direction (left or right biased)
dirSpatial dimension along which to interpolation
sObject of type HyPar containing solver-related variables
mObject of type MPIVariables containing MPI-related variables
uflagFlag to indicate if \(f(u) \equiv u\), i.e, if the solution is being reconstructed

Definition at line 91 of file Interp1PrimThirdOrderMUSCLChar.c.

102 {
103  HyPar *solver = (HyPar*) s;
104  MUSCLParameters *muscl = (MUSCLParameters*) solver->interp;
105  int i, k, v;
107 
108  int ghosts = solver->ghosts;
109  int ndims = solver->ndims;
110  int nvars = solver->nvars;
111  int *dim = solver->dim_local;
112 
113  /* define some constants */
114  double one_third = 1.0/3.0;
115  double one_sixth = 1.0/6.0;
116 
117  /* create index and bounds for the outer loop, i.e., to loop over all 1D lines along
118  dimension "dir" */
119  int indexC[ndims], indexI[ndims], index_outer[ndims], bounds_outer[ndims], bounds_inter[ndims];
120  _ArrayCopy1D_(dim,bounds_outer,ndims); bounds_outer[dir] = 1;
121  _ArrayCopy1D_(dim,bounds_inter,ndims); bounds_inter[dir] += 1;
122  int N_outer; _ArrayProduct1D_(bounds_outer,ndims,N_outer);
123 
124  /* allocate arrays for the averaged state, eigenvectors and characteristic interpolated f */
125  double R[nvars*nvars], L[nvars*nvars], uavg[nvars], fchar[nvars];
126 
127  if (upw > 0) {
128 #pragma omp parallel for schedule(auto) default(shared) private(i,k,v,R,L,uavg,fchar,index_outer,indexC,indexI)
129  for (i=0; i<N_outer; i++) {
130  _ArrayIndexnD_(ndims,i,bounds_outer,index_outer,0);
131  _ArrayCopy1D_(index_outer,indexC,ndims);
132  _ArrayCopy1D_(index_outer,indexI,ndims);
133 
134  for (indexI[dir] = 0; indexI[dir] < dim[dir]+1; indexI[dir]++) {
135 
136  /* 1D indices of the stencil grid points */
137  int qm1,qm2,qp1;
138  indexC[dir] = indexI[dir]-2; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qm2);
139  indexC[dir] = indexI[dir]-1; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qm1);
140  indexC[dir] = indexI[dir] ; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qp1);
141 
142  int p; /* 1D index of the interface */
143  _ArrayIndex1D_(ndims,bounds_inter,indexI,0,p);
144 
145  /* find averaged state at this interface */
146  IERR solver->AveragingFunction(uavg,&u[nvars*qm1],&u[nvars*qp1],solver->physics);
147  CHECKERR(ierr);
148 
149  /* Get the left and right eigenvectors */
150  IERR solver->GetLeftEigenvectors (uavg,L,solver->physics,dir); CHECKERR(ierr);
151  IERR solver->GetRightEigenvectors (uavg,R,solver->physics,dir); CHECKERR(ierr);
152 
153  /* For each characteristic field */
154  for (v = 0; v < nvars; v++) {
155  /* calculate the characteristic flux components along this characteristic */
156  double m2, m1, p1;
157  m2 = m1 = p1 = 0;
158  for (k = 0; k < nvars; k++) {
159  m2 += L[v*nvars+k] * fC[qm2*nvars+k];
160  m1 += L[v*nvars+k] * fC[qm1*nvars+k];
161  p1 += L[v*nvars+k] * fC[qp1*nvars+k];
162  }
163  double fdiff = p1 - m1;
164  double bdiff = m1 - m2;
165  double limit = (3*fdiff*bdiff + muscl->eps)
166  / (2*(fdiff-bdiff)*(fdiff-bdiff) + 3*fdiff*bdiff + muscl->eps);
167  fchar[v] = m1 + limit * (one_third*fdiff + one_sixth*bdiff);
168  }
169 
170  /* calculate the interface u from the characteristic u */
171  IERR MatVecMult(nvars,(fI+nvars*p),R,fchar); CHECKERR(ierr);
172  }
173  }
174  } else {
175 #pragma omp parallel for schedule(auto) default(shared) private(i,k,v,R,L,uavg,fchar,index_outer,indexC,indexI)
176  for (i=0; i<N_outer; i++) {
177  _ArrayIndexnD_(ndims,i,bounds_outer,index_outer,0);
178  _ArrayCopy1D_(index_outer,indexC,ndims);
179  _ArrayCopy1D_(index_outer,indexI,ndims);
180 
181  for (indexI[dir] = 0; indexI[dir] < dim[dir]+1; indexI[dir]++) {
182 
183  /* 1D indices of the stencil grid points */
184  int qm1,qp1,qp2;
185  indexC[dir] = indexI[dir]-1; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qm1);
186  indexC[dir] = indexI[dir] ; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qp1);
187  indexC[dir] = indexI[dir]+1; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qp2);
188 
189  int p; /* 1D index of the interface */
190  _ArrayIndex1D_(ndims,bounds_inter,indexI,0,p);
191 
192  /* find averaged state at this interface */
193  IERR solver->AveragingFunction(uavg,&u[nvars*qm1],&u[nvars*qp1],solver->physics);
194  CHECKERR(ierr);
195 
196  /* Get the left and right eigenvectors */
197  IERR solver->GetLeftEigenvectors (uavg,L,solver->physics,dir); CHECKERR(ierr);
198  IERR solver->GetRightEigenvectors (uavg,R,solver->physics,dir); CHECKERR(ierr);
199 
200  /* For each characteristic field */
201  for (v = 0; v < nvars; v++) {
202  /* calculate the characteristic flux components along this characteristic */
203  double m1, p1, p2;
204  m1 = p1 = p2 = 0;
205  for (k = 0; k < nvars; k++) {
206  m1 += L[v*nvars+k] * fC[qm1*nvars+k];
207  p1 += L[v*nvars+k] * fC[qp1*nvars+k];
208  p2 += L[v*nvars+k] * fC[qp2*nvars+k];
209  }
210  double fdiff = p2 - p1;
211  double bdiff = p1 - m1;
212  double limit = (3*fdiff*bdiff + muscl->eps)
213  / (2*(fdiff-bdiff)*(fdiff-bdiff) + 3*fdiff*bdiff + muscl->eps);
214  fchar[v] = p1 - limit * (one_third*fdiff + one_sixth*bdiff);
215  }
216 
217  /* calculate the interface u from the characteristic u */
218  IERR MatVecMult(nvars,(fI+nvars*p),R,fchar); CHECKERR(ierr);
219  }
220  }
221  }
222 
223  return(0);
224 }
void * interp
Definition: hypar.h:362
#define _ArrayIndexnD_(N, index, imax, i, ghost)
void * physics
Definition: hypar.h:266
int(* GetRightEigenvectors)(double *, double *, void *, int)
Definition: hypar.h:359
int * dim_local
Definition: hypar.h:37
int ghosts
Definition: hypar.h:52
#define _ArrayIndex1D_(N, imax, i, ghost, index)
int(* AveragingFunction)(double *, double *, double *, void *)
Definition: hypar.h:354
#define MatVecMult(N, y, A, x)
int(* GetLeftEigenvectors)(double *, double *, void *, int)
Definition: hypar.h:357
#define _ArrayCopy1D_(x, y, size)
int nvars
Definition: hypar.h:29
#define CHECKERR(ierr)
Definition: basic.h:18
Structure of variables/parameters needed by the MUSCL scheme.
int ndims
Definition: hypar.h:26
#define IERR
Definition: basic.h:16
#define _ArrayProduct1D_(x, size, p)
Structure containing all solver-specific variables and functions.
Definition: hypar.h:23
#define _DECLARE_IERR_
Definition: basic.h:17