HyPar
1.0
Finite-Difference Hyperbolic-Parabolic PDE Solver on Cartesian Grids
|
Pre-step function for 3D Navier Stokes equations. More...
#include <basic_gpu.h>
#include <arrayfunctions_gpu.h>
#include <mathfunctions.h>
#include <matmult_native.h>
#include <physicalmodels/navierstokes3d.h>
#include <hypar.h>
Go to the source code of this file.
Functions | |
__global__ void | gpuNavierStokes3DPreStep_kernel (int npoints_grid, double gamma, const double *__restrict__ u, double *__restrict__ fast_jac) |
int | gpuNavierStokes3DPreStep (double *u, void *s, void *m, double waqt) |
Pre-step function for 3D Navier Stokes equations.
Definition in file NavierStokes3DPreStep_GPU.cu.
__global__ void gpuNavierStokes3DPreStep_kernel | ( | int | npoints_grid, |
double | gamma, | ||
const double *__restrict__ | u, | ||
double *__restrict__ | fast_jac | ||
) |
Kernel for gpuNavierStokes3DPreStep()
Definition at line 117 of file NavierStokes3DPreStep_GPU.cu.
int gpuNavierStokes3DPreStep | ( | double * | u, |
void * | s, | ||
void * | m, | ||
double | waqt | ||
) |
Pre-step function for the 3D Navier Stokes equations: This function is called at the beginning of each time step.
\begin{equation} A_f\left({\bf u}\right) = R\left({\bf u}\right)\Lambda_f\left({\bf u}\right)L\left({\bf u}\right) \end{equation}
where \(R\) and \(L\) are the matrices of right and left eigenvectors, and,\begin{equation} \Lambda_f = diag\left[0,0,0,u+c,u-c \right] \end{equation}
with \(c\) being the speed of sound.u | Solution vector |
s | Solver object of type HyPar |
m | MPI object of type MPIVariables |
waqt | Current simulation time |
Definition at line 192 of file NavierStokes3DPreStep_GPU.cu.