HyPar  1.0
Finite-Difference Hyperbolic-Parabolic PDE Solver on Cartesian Grids
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
Interp1PrimSecondOrderMUSCLChar.c
Go to the documentation of this file.
1 
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <basic.h>
9 #include <arrayfunctions.h>
10 #include <matmult_native.h>
11 #include <mathfunctions.h>
12 #include <interpolation.h>
13 #include <mpivars.h>
14 #include <hypar.h>
15 
16 #ifdef with_omp
17 #include <omp.h>
18 #endif
19 
20 #undef _MINIMUM_GHOSTS_
21 
25 #define _MINIMUM_GHOSTS_ 2
26 
93  double *fI,
94  double *fC,
95  double *u,
96  double *x,
97  int upw,
98  int dir,
99  void *s,
100  void *m,
101  int uflag
102  )
103 {
104  HyPar *solver = (HyPar*) s;
105  MUSCLParameters *muscl = (MUSCLParameters*) solver->interp;
106  int i, k, v;
108 
109  int ghosts = solver->ghosts;
110  int ndims = solver->ndims;
111  int nvars = solver->nvars;
112  int *dim = solver->dim_local;
113 
114  /* define some constants */
115  double one_third = 1.0/3.0;
116  double one_sixth = 1.0/6.0;
117 
118  /* create index and bounds for the outer loop, i.e., to loop over all 1D lines along
119  dimension "dir" */
120  int indexC[ndims], indexI[ndims], index_outer[ndims], bounds_outer[ndims], bounds_inter[ndims];
121  _ArrayCopy1D_(dim,bounds_outer,ndims); bounds_outer[dir] = 1;
122  _ArrayCopy1D_(dim,bounds_inter,ndims); bounds_inter[dir] += 1;
123  int N_outer; _ArrayProduct1D_(bounds_outer,ndims,N_outer);
124 
125  /* allocate arrays for the averaged state, eigenvectors and characteristic interpolated f */
126  double R[nvars*nvars], L[nvars*nvars], uavg[nvars], fchar[nvars];
127 
128  if (upw > 0) {
129 #pragma omp parallel for schedule(auto) default(shared) private(i,k,v,R,L,uavg,fchar,index_outer,indexC,indexI)
130  for (i=0; i<N_outer; i++) {
131  _ArrayIndexnD_(ndims,i,bounds_outer,index_outer,0);
132  _ArrayCopy1D_(index_outer,indexC,ndims);
133  _ArrayCopy1D_(index_outer,indexI,ndims);
134 
135  for (indexI[dir] = 0; indexI[dir] < dim[dir]+1; indexI[dir]++) {
136 
137  /* 1D indices of the stencil grid points */
138  int qm1,qm2,qp1;
139  indexC[dir] = indexI[dir]-2; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qm2);
140  indexC[dir] = indexI[dir]-1; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qm1);
141  indexC[dir] = indexI[dir] ; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qp1);
142 
143  int p; /* 1D index of the interface */
144  _ArrayIndex1D_(ndims,bounds_inter,indexI,0,p);
145 
146  /* find averaged state at this interface */
147  IERR solver->AveragingFunction(uavg,&u[nvars*qm1],&u[nvars*qp1],solver->physics);
148  CHECKERR(ierr);
149 
150  /* Get the left and right eigenvectors */
151  IERR solver->GetLeftEigenvectors (uavg,L,solver->physics,dir); CHECKERR(ierr);
152  IERR solver->GetRightEigenvectors (uavg,R,solver->physics,dir); CHECKERR(ierr);
153 
154  /* For each characteristic field */
155  for (v = 0; v < nvars; v++) {
156  /* calculate the characteristic flux components along this characteristic */
157  double m2, m1, p1;
158  m2 = m1 = p1 = 0;
159  for (k = 0; k < nvars; k++) {
160  m2 += L[v*nvars+k] * fC[qm2*nvars+k];
161  m1 += L[v*nvars+k] * fC[qm1*nvars+k];
162  p1 += L[v*nvars+k] * fC[qp1*nvars+k];
163  }
164 
165  double slope_ratio = (m1 - m2) / ((p1 - m1) + 1e-40);
166  double phi = muscl->LimiterFunction(slope_ratio);
167  fchar[v] = m1 + 0.5 * phi * (p1-m1);
168  }
169 
170  /* calculate the interface u from the characteristic u */
171  IERR MatVecMult(nvars,(fI+nvars*p),R,fchar); CHECKERR(ierr);
172  }
173  }
174  } else {
175 #pragma omp parallel for schedule(auto) default(shared) private(i,k,v,R,L,uavg,fchar,index_outer,indexC,indexI)
176  for (i=0; i<N_outer; i++) {
177  _ArrayIndexnD_(ndims,i,bounds_outer,index_outer,0);
178  _ArrayCopy1D_(index_outer,indexC,ndims);
179  _ArrayCopy1D_(index_outer,indexI,ndims);
180 
181  for (indexI[dir] = 0; indexI[dir] < dim[dir]+1; indexI[dir]++) {
182 
183  /* 1D indices of the stencil grid points */
184  int qm1,qp1,qp2;
185  indexC[dir] = indexI[dir]-1; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qm1);
186  indexC[dir] = indexI[dir] ; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qp1);
187  indexC[dir] = indexI[dir]+1; _ArrayIndex1D_(ndims,dim,indexC,ghosts,qp2);
188 
189  int p; /* 1D index of the interface */
190  _ArrayIndex1D_(ndims,bounds_inter,indexI,0,p);
191 
192  /* find averaged state at this interface */
193  IERR solver->AveragingFunction(uavg,&u[nvars*qm1],&u[nvars*qp1],solver->physics);
194  CHECKERR(ierr);
195 
196  /* Get the left and right eigenvectors */
197  IERR solver->GetLeftEigenvectors (uavg,L,solver->physics,dir); CHECKERR(ierr);
198  IERR solver->GetRightEigenvectors (uavg,R,solver->physics,dir); CHECKERR(ierr);
199 
200  /* For each characteristic field */
201  for (v = 0; v < nvars; v++) {
202  /* calculate the characteristic flux components along this characteristic */
203  double m1, p1, p2;
204  m1 = p1 = p2 = 0;
205  for (k = 0; k < nvars; k++) {
206  m1 += L[v*nvars+k] * fC[qm1*nvars+k];
207  p1 += L[v*nvars+k] * fC[qp1*nvars+k];
208  p2 += L[v*nvars+k] * fC[qp2*nvars+k];
209  }
210 
211  double slope_ratio = (p1 - m1) / ((p2 - p1) + 1e-40);
212  double phi = muscl->LimiterFunction(slope_ratio);
213  fchar[v] = p1 + 0.5 * phi * (p1-p2);
214  }
215 
216  /* calculate the interface u from the characteristic u */
217  IERR MatVecMult(nvars,(fI+nvars*p),R,fchar); CHECKERR(ierr);
218  }
219  }
220  }
221 
222  return(0);
223 }
void * interp
Definition: hypar.h:362
Definitions for the functions computing the interpolated value of the primitive at the cell interface...
#define _ArrayIndexnD_(N, index, imax, i, ghost)
int Interp1PrimSecondOrderMUSCLChar(double *, double *, double *, double *, int, int, void *, void *, int)
2nd order MUSCL scheme (characteristic-based) on a uniform grid
void * physics
Definition: hypar.h:266
int(* GetRightEigenvectors)(double *, double *, void *, int)
Definition: hypar.h:359
int * dim_local
Definition: hypar.h:37
MPI related function definitions.
double(* LimiterFunction)(double)
int ghosts
Definition: hypar.h:52
#define _ArrayIndex1D_(N, imax, i, ghost, index)
int(* AveragingFunction)(double *, double *, double *, void *)
Definition: hypar.h:354
#define MatVecMult(N, y, A, x)
Contains function definitions for common mathematical functions.
int(* GetLeftEigenvectors)(double *, double *, void *, int)
Definition: hypar.h:357
#define _ArrayCopy1D_(x, y, size)
int nvars
Definition: hypar.h:29
#define CHECKERR(ierr)
Definition: basic.h:18
Contains structure definition for hypar.
Some basic definitions and macros.
Structure of variables/parameters needed by the MUSCL scheme.
int ndims
Definition: hypar.h:26
Contains macros and function definitions for common array operations.
#define IERR
Definition: basic.h:16
#define _ArrayProduct1D_(x, size, p)
Structure containing all solver-specific variables and functions.
Definition: hypar.h:23
Contains macros and function definitions for common matrix multiplication.
#define _DECLARE_IERR_
Definition: basic.h:17